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How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

Traditional NLP method: Use the sets of synonyms and hypernyms of
word by querying some databases (e.g., WordNet)
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Problems with the traditional method (like WordNet)

- Missing nuances
- Missing new meanings of words

- Word meanings constantly change and adapt based on how
people really use the language in the world

- Practically, building/updating a database is expensive and
inefficient.

- Can't compute accurate word similarity
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- Review

- Encoding and embedding
- Word2vec

- Evaluation

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers



Encoding and embedding



- Words themselves cannot be given as inputs to computers



- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers



- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers
- Encoding = converting words to vectors



- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers

- Encoding = converting words to vectors
- vector: an ordered list of numbers (e.g., [01, 0.3, -0.5])
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One-hot encoding

- The cat sat

- Only the entry for the word is set to 1 (others = 0)

- Each vector is in RI!*1, where |v| = vocabulary size

word | encoding
the [1,0,0] |- Forsimplicity, we wrote them as row vectors in the -
cat [0, 1, 0] should be transposed; turning a row into a column
sat (0,0, 1] vector)

- Localist, sparse representation
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One-hot encoding (problem)

- The cat sat

- Problems with one-hot encoding:
- High dimensional vectors (size = vocab size)

word | encoding o
- No sense of similarity between words
the [1,0,0]
- All one-hot vectors are orthogonal (see
cat [0, 1, 0] graph)
sat (0,0, 1] - Cosine similarity:
. (g — _AB
cos(6) = i zjjz (code)
- Solution:
wt - Move from sparse to distributed
cat representation
- Learn to encode similarity in the vectors
e themselves

- Word embeddings (e.g., Word2Vec, GloVe)
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Representing words by their context

- Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

- “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

- When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window)

- Use the many context of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
-..India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking



Word vector representations: Two ways

1. Count-based models: Build a co-occurrence matrix and apply
SVD



Word vector representations: Two ways

1. Count-based models: Build a co-occurrence matrix and apply
SVD

2. Neural network-based models: Learn embeddings by predicting
context words (e.g., Word2Vec, GloVe)
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Word vectors: Count-based Models

- Start with a Bag-of-Words (BoW) representation

- Extend to a co-occurrence matrix: count how often words
appear together in a context window

- Apply Singular Value Decomposition (SVD) to reduce dimensions
(a way of breaking a big matrix into a smaller pieces)



cf. Bag of Words

it 6

1 5

| love this movie! It's sweet, the 4
but with satirical humor. The fakey always lmls“,It to 3
dialogue is great and the 1t whimsical it | and 3
adventure scenes are fun... seen 2
It manages to be whimsical yet 1
and romantic while laughing would 1
at the conventions of the whimsical 1
fairy tale genre. | would times 1
recommend it to just about sweet 1
anyone. I've seen it several satirical 1
times, and I'm always happy adventure 1
to see it again whenever | genre 1
have a friend who hasn't fairy 1
seen it yet! humor 1
have 1

1

great

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

- Bag-of-Words assumption: Context words are treated as
unordered and independent.
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| love this movie! It's sweet, the 4
but with satirical humor. The to 3
dialogue is great and the and 3
adventure scenes are fun... seen 2
It manages to be whimsical yet 1
and romantic while laughing would 1
at the conventions of the whimsical 1
fairy tale genre. | would times 1
recommend it to just about sweet 1
anyone. I've seen it several satirical 1
times, and I'm always happy adventure 1
to see it again whenever | genre 1
have a friend who hasn't fairy 1
seen it yet! humor 1
have 1

1

great

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

- Bag-of-Words assumption: Context words are treated as
unordered and independent.

- In other words, the position of a context word relative to the
target is ignored.
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vectors: Count-based models

Example sentences:

- | like apples.

- You like bananas.
- They eat bananas.
- We enjoy apples.
- They like fruit.

| you we they like eat enjoy apples bananas  fruit
| 0 0 0 0 1 0 0 0 0 0
you 0 0 0 0 1 0 0 0 0
we 0 0 0 0 0 0 1 0 0 0
they 0 0 0 0 1 1 0 0 0 0
like 1 1 0 1 0 0 0 1 1 1
eat 0 0 0 1 0 0 0 0 1 0
enjoy 0 0 1 0 0 0 0 1 0 0
apples 0 0 0 0 1 0 1 0 0 0
bananas 0 0 0 0 1 1 0 0 0 0
fruit 0 0 0 0 1 0 0 0 0 0

Co-occurrence Matrix (window size = 1)
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Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy

- Most cells are 0 = sparse matrix
- Rare words/contexts yield unreliable statistics

- Poor scalability / update issues
- Adding new words requires recomputing the entire matrix and SVD
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Word vectors: Neural Network-Based Models

How are they different from count-based models?
- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context
words
Consistent progress
- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)
- 2003: A neural probabilistic language model (Bengio et al., 2003)
- 2013: Word2Vec (Skip-gram, CBOW)
- 2014-2015: GloVe, fastText
- 2018-: Contextual embeddings (ELMo, BERT, GPT)

14
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Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors

- |ldea:

- Start with a large corpus (“body”) of text

- Every word in a fixed vocabulary is represented by a vector

- Go through each position t in the text, which has a center word ¢
and context (outside) word o

- Use the similarity of the word vectors for c and o to calculate the
probability of o given ¢ (or vice versa)

- Keep adjusting the word vectors to maximize the probability



Word2vec: Two models

INPUT PROJECTION  OUTPUT

SUM

Continuous Bag of Words (CBOW):
predicting the center words using
the context words (P(W¢|W¢_2, We—1, Wet1, Wey2))

In practice, we focus on Skip-gram.

INPUT PROJECTION  OUTPUT

Skip-grams (SG):
predicting the context words using
the center word (P(W¢4;lwe), i € {—2,-1,1,2})

16
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Build training pairs

- Take a large text corpus
- For each word, collect nearby words within a fixed window size

- These become training pairs: (center word, context word)



Word2Vec: Skip-grams (window size = 1)

* “king brave man”
* “queen beautiful woman”

word neighbor
king brave
brave king
brave man
man brave
queen beautiful
beautiful queen
beautiful woman
woman beautiful




Word2Vec: Skip-grams (window size = 2)

* “king brave man”

* “queen beautiful woman”

word neighbor
king brave
king man
brave man
brave king
man king
man brave
queen beautiful
queen woman
beautiful queen
beautiful woman
woman queen
woman beautiful
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Word2Vec: Skip-grams (window size = 2)

word one-hot encoding neighbor one-hot encoding
king [1,0,0,0,0,0] brave [0,1,0,0,0,0]
king [1,0,0,0,0,0] man [0,0,1,0,0,0]
brave [0,1,0,0,0,0] man [0,0,1,0,0,0]
brave [0,1,0,0,0,0] king [1,0,0,0,0,0]
man [0,0,1,0,0,0] king [1,0,0,0,0,0]
man [0,0,1,0,0,0] brave [0,1,0,0,0,0]
queen [0,0,0,1,0,0] beautiful [0,0,0,0,1,0]
queen [0,0,0,1,0,0] woman [0,0,0,0,0,1]
beautiful [0,0,0,0,1,0] queen [0,0,0,1,0,0]
beautiful [0,0,0,0,1,0] woman [0,0,0,0,0,1]
woman [0,0,0,0,0,1] queen [0,0,0,1,0,0]
woman [0,0,0,0,0,1] beautiful [0,0,0,0,1,0]

20



Word2Vec: Input and output

input
[1,0,0,0,0,0]
[1,0,0,0,0,0]
[0,1,0,0,0,0]
[0,1,0,0,0,0]
[0,0,1,0,0,0]
[0,0,1,0,0,0]
[0,0,0,1,0,0]
[0,0,0,1,0,0]
[0,0,0,0,1,0]
[0,0,0,0,1,0]
[0,0,0,0,0,1]
[0,0,0,0,0,1]

output

[0,1,0,0,0,0]

[0,0,1,0,0,0]

[0,0,1,0,0,0]

[1,0,0,0,0,0]

[1,0,0,0,0,0]

[0,1,0,0,0,0]

[0,0,0,0,1,0]

[0,0,0,0,0,1]

[0,0,0,1,0,0]

[0,0,0,0,0,1]

[0,0,0,1,0,0]

[0,0,0,0,1,0]

21



Word2Vec: Training

input layer

22



hidden layer

input layer

(linear transformation) word embedding
king [1,1
king brave [1,2]
man [1,3]
queen [5,1]
beautiful [5, 2]
woman [5, 3]
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1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

- All these word vectors are stored in a single matrix:
Embedding matrix E ¢ RV*¢

- Why do we store all vectors in one matrix?

- Each word has a unique ID, so we can quickly select its row from
the matrix.
- This operation is very efficient — it's just a lookup.

24



2. Predicting context words

- Take the center word’s embedding
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2. Predicting context words

- Take the center word’s embedding
- Compare it with each candidate context word’s output vector
- Compute a dot product as a similarity score
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Note. Dot product as similarity score

- Algebraic definition: For two vectors a = (aq, ..., a,,) and

b=(by,...,b,),
a-b= Zaibi
i=1

(multiply each coordinate and add them up)

- Geometric interpretation: The same dot product can also be
written as
a-b=|al|b|cos@

where 6 is the angle between a and b. Larger values = vectors
point in a similar direction (more related).

26



Note. Dot product as similarity score

- In Word2Vec: .

w‘ Uczuwz
i=1

where v, is the center word vector, u,, is a candidate context
vector.

- Toy example: v, = [2,1] (“cat”), u,, = [3, 4] (“dog")
=2x3)+(1x4)=10
- Comparison: u,, = [—2,5] (“car”)

=(2x-2)+(1x5)=1

27



Note. Dot Product as Geometry (Examples)

IS

og (u,,)

6 1115

UAB) 270

< v, = [2,1] (“cat”), u,, = [3,4] (“dog”) w
positive (similar direction).

< v, = [2,1] (“cat”), u,, = [-2,5] (“car”) wv,-u, =1 = small
(weak relation). -

-u,, =10 = large

c



3. From similarity scores to probabilities

- After retrieving the center word and a context word'’s vectors, we
compute their dot product:

score = 4, - U,
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3. From similarity scores to probabilities

- After retrieving the center word and a context word'’s vectors, we
compute their dot product:

score = 4, - U,

- To interpret this score as a probability, we apply the sigmoid

function:
1

1 _|_ e*SCOI’G
- The output is a number between 0 and 1 — representing how
likely this word is to appear in the context.

o(score) =

29
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4, Compute loss

- We compare predicted probabilities with actual labels:
- True context words - label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

- The model is rewarded when:

- It assigns high probability to true context words
- It assigns low probability to negative (random) words

- The model adjusts vectors to maximize the probability of real
words and minimize that of negatives

30
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- Optimizer updates parameters based on gradients
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5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:
- The center word’s vector
- The true context word'’s vector
- The negative samples’ vectors
- Over time, words with similar contexts move closer in vector
space
- We'll look at the optimization more closely in the following slides.

Cost
A
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Minimum

Random
initial value
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Notel. Embedding matrix

- E is the embedding matrix: each row corresponds to one word

- Its size:
Ec RVXN

-V = vocabulary size (number of unique words)
- N = embedding dimension (hyperparameter)

- Example: V = 10,000, N = 300 = 3 million parameters
- Larger N = more expressive vectors, but higher cost
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Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(6) (measures how wrong predictions are).
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Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values
- Compute the gradient of J(#) (which tells us the slope)
- Move a small step in the opposite direction of the gradient
- Repeat many times until the loss becomes small
- Loss functions may not always convex.
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Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of J(6) using all data, then update 6.

- Because all data is considered, the update direction is accurate.

- However, when the dataset is large, computation becomes very
slow.
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Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of J(6) using all data, then update 6.
- Because all data is considered, the update direction is accurate.

- However, when the dataset is large, computation becomes very
slow.

Stochastic Gradient Descent (SGD)

- Randomly sample one data point from the training set, compute
its gradient, then update 6.

- Because only one sample is used, the path may fluctuate a lot.

- Despite the noise, it is much faster than batch gradient descent.

Mini-Batch Gradient Descent

- Compute the gradient using a mini-batch of data, then update 6.
- This balances the pros and cons of batch and stochastic
gradient descent, making it the most practical method.
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GloVe




Revisit: Count-based & Neural-based models

- Count-based

- Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity

- Neural-based
- Scales with corpus size

- Inefficient usage of statistics (e.g., random sampling)
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Motivation: Encoding meaning via co-occurrence ratios

- ldea: Meaning differences between words can be reflected in the
ratios of their co-occurrence probabilities with other words.

- GloVe leverages these ratios to learn word vectors where vector
differences encode semantic components.

- Next lecture (on Tuesday), we'll start from here.
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Evaluation




How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

Intrinsic evaluation
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How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

- e.g, Name Entity Recognition Task

Intrinsic evaluation

- Evaluate performance through concrete subtasks at
intermediate stages (e.g., word similarity, analogy).

- Faster evaluation speed.

- Difficult to judge whether improvements actually transfer to real
tasks.

37



How to evaluate word vectors

Extrinsic evaluation

- e.g, Name Entity Recognition Task

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.
Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 734
SVD |90.8 857 773 737
SVD-S | 91.0 855 77.6 743
SVD-L | 90.5 84.8 736 715
HPCA | 92.6 887 817 80.7
HSMN | 90.5 857 787 74.7
CwW 922 874 81.7 802
CBOW | 93.1 882 822 8l1.1
GloVe | 932 833 829 822

Figure 1: Pennington et al. (2014)
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How to evaluate word vectors

Intrinsic evaluation
- e.g, Word Analogies: Syntactic, Semantic

Word analogy task: "aisto b as cisto ?”

- Semantic example: Athens : Greece = Berlin: ___
- Syntactic example: dance : dancing = fly: ___

39



How to evaluate word vectors

Intrinsic evaluation
- e.g, Word Analogies: Syntactic, Semantic

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available?; (i)vLBL results arc from (Mnih ct al..
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al.. 2013a.b); we trained SG'
and CBOW' using the word2vec tool’. See text
for details and a description of the SVD models.

Model _Dim. _Size | Sem. Syn. Tot.
LBL 100 1.5B | 559 50.1 532
HPCA 100 16B| 42 164 108
GloVe 100 16B | 67.5 543 603
SG 300 1B | 61 61 6l
CBOW 300 16B| 161 526 36.1
vLBL 300 15B| 542 648 60.0
iLBL 300 15B | 652 630 64.0
GloVe 300 16B | 80.8 615 703
SVD 300 6B | 63 81 73
SVDS 300 6B | 367 466 421
SVD-L 300 6B | 566 630 60.1
CBOW' 300 6B | 63.6 674 657
SG' 300 6B | 730 660 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 661 65.1 656
SVDL 300 42B | 384 582 492
Glove 300 42B | 819 693 75.0

Figure 2: Pennington et al. (2014)

40



How to evaluate word vectors

Intrinsic evaluation

- e.g, Correlation evaluation: calculate the relationship between
word vector and human judgments
- Dataset: wordsim353

(https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW* vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 351 425 383 256
SVD-S 6B | 565 715 710 536 347
SVD-L 6B | 657 727 751 565 37.0
CBOW' 6B | 572 656 682 57.0 325
SG' 6B | 628 652 69.7 581 372
GloVe 6B | 658 727 77.8 539 381
SVD-L 42B| 740 764 741 583 39.9
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 594 455

Figure 3: Pennington et al. (2014)
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Conclusion

- Encoding and embedding

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers
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