3. Word vectors

LING-581-Natural Language Processing1

Instructor: Hakyung Sung
September 2, 2025

*Acknowledgment: These course slides are based on materials from CS224N: NLP with Deep Learning @ Stanford University.

Table of contents

1. Encoding and embedding
2. Word2vec
3. GloVe

4. Evaluation

Review

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

Traditional NLP method: Use the sets of synonyms and hypernyms of
word by querying some databases (e.g., WordNet)

Problems with the traditional method (like WordNet)

- Missing nuances

Problems with the traditional method (like WordNet)

- Missing nuances
- Missing new meanings of words

Problems with the traditional method (like WordNet)

- Missing nuances
- Missing new meanings of words

- Word meanings constantly change and adapt based on how
people really use the language in the world

Problems with the traditional method (like WordNet)

- Missing nuances
- Missing new meanings of words
- Word meanings constantly change and adapt based on how
people really use the language in the world

- Practically, building/updating a database is expensive and
inefficient.

Problems with the traditional method (like WordNet)

- Missing nuances
- Missing new meanings of words

- Word meanings constantly change and adapt based on how
people really use the language in the world

- Practically, building/updating a database is expensive and
inefficient.

- Can't compute accurate word similarity

Lesson plan

- Review
- Encoding and embedding

- Review
- Encoding and embedding
- Word2vec

- Review
- Encoding and embedding
- Word2vec

- Evaluation

- Review
- Encoding and embedding
- Word2vec

- Evaluation

- Review

- Encoding and embedding
- Word2vec

- Evaluation

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers

Encoding and embedding

- Words themselves cannot be given as inputs to computers

- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers

- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers
- Encoding = converting words to vectors

- Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers

- Encoding = converting words to vectors
- vector: an ordered list of numbers (e.g., [01, 0.3, -0.5])

One-hot encoding

- The cat sat

- Only the entry for the word is set to 1 (others = 0)

word | encoding
the [1,0,0]
cat [0, 1, 0]
sat [0, 0, 1]

One-hot encoding

- The cat sat

- Only the entry for the word is set to 1 (others = 0)

:) DX L .
word | encoding Each vector is in RII** where |v| = vocabulary size

the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

One-hot encoding

- The cat sat

- Only the entry for the word is set to 1 (others = 0)

:) DX L .
word | encoding Each vector is in RII** where |v| = vocabulary size

the [1,0,0] |- Forsimplicity, we wrote them as row vectors in the -
cat [0, 1, 0] should be transposed; turning a row into a column

sat [0, 0, 1] vector)

One-hot encoding

- The cat sat

- Only the entry for the word is set to 1 (others = 0)

- Each vector is in RI!*1, where |v| = vocabulary size

word | encoding
the [1,0,0] |- Forsimplicity, we wrote them as row vectors in the -
cat [0, 1, 0] should be transposed; turning a row into a column
sat (0,0, 1] vector)

- Localist, sparse representation

One-hot encoding (problem)

- The cat sat
word | encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

- Problems with one-hot encoding:
- High dimensional vectors (size = vocab size)

- Solution:

One-hot encoding (problem)

- The cat sat
word | encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

- Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)
- No sense of similarity between words

- Solution:

One-hot encoding (problem)

- The cat sat
word | encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

- Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)

- No sense of similarity between words

- All one-hot vectors are orthogonal (see
graph)

- Solution:

One-hot encoding (problem)

- The cat sat
word | encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

- Problems with one-hot encoding:
- High dimensional vectors (size = vocab size)
- No sense of similarity between words
- All one-hot vectors are orthogonal (see

graph)
- Cosine similarity:

- Solution:

One-hot encoding (problem)

- The cat sat
word | encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

- Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)

- No sense of similarity between words

- All one-hot vectors are orthogonal (see
graph)

- Cosine similarity:

. cos(0) — _AB
cos(6) = i zjjz (code)

- Solution:

One-hot encoding (problem)

- The cat sat

- Problems with one-hot encoding:

- - High dimensional vectors (size = vocab size)
word | encoding o

- No sense of similarity between words
the [1, 0, 0]

- All one-hot vectors are orthogonal (see
cat [0, 1, 0] graph)
sat (0,0, 1] - Cosine similarity:

. . _ _AB
cos(6) = i zjjz (code)
- Solution:

- Move from sparse to distributed
cat representation

sat

One-hot encoding (problem)

- The cat sat

- Problems with one-hot encoding:

- - High dimensional vectors (size = vocab size)
word | encoding L
- No sense of similarity between words
the [1,0,0]
- All one-hot vectors are orthogonal (see
cat [0, 1, 0] graph)
sat (0,0, 1] - Cosine similarity:
. () — _AB
cos(6) = i zjjz (code)
- Solution:
wt - Move from sparse to distributed
cat representation

- Learn to encode similarity in the vectors
themselves

One-hot encoding (problem)

- The cat sat

- Problems with one-hot encoding:
- High dimensional vectors (size = vocab size)

word | encoding o
- No sense of similarity between words
the [1,0,0]
- All one-hot vectors are orthogonal (see
cat [0, 1, 0] graph)
sat (0,0, 1] - Cosine similarity:
. (g — _AB
cos(6) = i zjjz (code)
- Solution:
wt - Move from sparse to distributed
cat representation
- Learn to encode similarity in the vectors
e themselves

- Word embeddings (e.g., Word2Vec, GloVe)

Representing words by their context

- Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

Representing words by their context

- Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

- “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

Representing words by their context

- Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

- “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

- When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window)

Representing words by their context

- Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

- “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

- When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window)

- Use the many context of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
-..India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Word vector representations: Two ways

1. Count-based models: Build a co-occurrence matrix and apply
SVD

Word vector representations: Two ways

1. Count-based models: Build a co-occurrence matrix and apply
SVD

2. Neural network-based models: Learn embeddings by predicting
context words (e.g., Word2Vec, GloVe)

Word vectors: Count-based Models

- Start with a Bag-of-Words (BoW) representation

Word vectors: Count-based Models

- Start with a Bag-of-Words (BoW) representation

- Extend to a co-occurrence matrix: count how often words
appear together in a context window

Word vectors: Count-based Models

- Start with a Bag-of-Words (BoW) representation

- Extend to a co-occurrence matrix: count how often words
appear together in a context window

- Apply Singular Value Decomposition (SVD) to reduce dimensions
(a way of breaking a big matrix into a smaller pieces)

cf. Bag of Words

it 6

1 5

| love this movie! It's sweet, the 4
but with satirical humor. The fakey always lmls“,It to 3
dialogue is great and the 1t whimsical it | and 3
adventure scenes are fun... seen 2
It manages to be whimsical yet 1
and romantic while laughing would 1
at the conventions of the whimsical 1
fairy tale genre. | would times 1
recommend it to just about sweet 1
anyone. I've seen it several satirical 1
times, and I'm always happy adventure 1
to see it again whenever | genre 1
have a friend who hasn't fairy 1
seen it yet! humor 1
have 1

1

great

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

- Bag-of-Words assumption: Context words are treated as
unordered and independent.

1

https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8

cf. Bag of Words

it 6

1 5

| love this movie! It's sweet, the 4
but with satirical humor. The to 3
dialogue is great and the and 3
adventure scenes are fun... seen 2
It manages to be whimsical yet 1
and romantic while laughing would 1
at the conventions of the whimsical 1
fairy tale genre. | would times 1
recommend it to just about sweet 1
anyone. I've seen it several satirical 1
times, and I'm always happy adventure 1
to see it again whenever | genre 1
have a friend who hasn't fairy 1
seen it yet! humor 1
have 1

1

great

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

- Bag-of-Words assumption: Context words are treated as
unordered and independent.

- In other words, the position of a context word relative to the
target is ignored.

1

https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8

Word vectors: Count-based models

Example sentences:

- | like apples.

- You like bananas.
- They eat bananas.
- We enjoy apples.
- They like fruit.

vectors: Count-based models

Example sentences:

- | like apples.

- You like bananas.
- They eat bananas.
- We enjoy apples.
- They like fruit.

| you we they like eat enjoy apples bananas fruit
| 0 0 0 0 1 0 0 0 0 0
you 0 0 0 0 1 0 0 0 0
we 0 0 0 0 0 0 1 0 0 0
they 0 0 0 0 1 1 0 0 0 0
like 1 1 0 1 0 0 0 1 1 1
eat 0 0 0 1 0 0 0 0 1 0
enjoy 0 0 1 0 0 0 0 1 0 0
apples 0 0 0 0 1 0 1 0 0 0
bananas 0 0 0 0 1 1 0 0 0 0
fruit 0 0 0 0 1 0 0 0 0 0

Co-occurrence Matrix (window size = 1)

Count-based models (Limitations)

- High computational cost

Count-based models (Limitations)

- High computational cost
- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)

Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy

Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy
- Most cells are 0 = sparse matrix

Count-based models (Limitations)

- High computational cost
- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy

- Most cells are 0 = sparse matrix
- Rare words/contexts yield unreliable statistics

Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy

- Most cells are 0 = sparse matrix
- Rare words/contexts yield unreliable statistics

- Poor scalability / update issues

Count-based models (Limitations)

- High computational cost

- Co-occurrence matrix size: |[V| x |V| (vocabulary squared)
- Too large to store/compute for big corpora

- Sparse and noisy

- Most cells are 0 = sparse matrix
- Rare words/contexts yield unreliable statistics

- Poor scalability / update issues
- Adding new words requires recomputing the entire matrix and SVD

Word vectors: Neural Network-Based Models

How are they different from count-based models?

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

- Neural models: learn vectors directly by predicting context
words

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

- Neural models: learn vectors directly by predicting context
words

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

- Neural models: learn vectors directly by predicting context
words

Consistent progress

- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

- Neural models: learn vectors directly by predicting context
words

Consistent progress

- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)

- 2003: A neural probabilistic language model (Bengio et al., 2003)

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?
- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

- Neural models: learn vectors directly by predicting context
words

Consistent progress

- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)

- 2003: A neural probabilistic language model (Bengio et al., 2003)
- 2013: Word2Vec (Skip-gram, CBOW)

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?
- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context
words
Consistent progress
- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)
- 2003: A neural probabilistic language model (Bengio et al., 2003)
- 2013: Word2Vec (Skip-gram, CBOW)
- 2014-2015: GloVe, fastText

14

Word vectors: Neural Network-Based Models

How are they different from count-based models?
- Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context
words
Consistent progress
- 1986: Learning representations by back propagting errors
(Rumelhart et al,, 1986)
- 2003: A neural probabilistic language model (Bengio et al., 2003)
- 2013: Word2Vec (Skip-gram, CBOW)
- 2014-2015: GloVe, fastText
- 2018-: Contextual embeddings (ELMo, BERT, GPT)

14

Word2vec

Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors

- ldea:
- Start with a large corpus (“body”) of text

Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors
- ldea:

- Start with a large corpus (“body”) of text
- Every word in a fixed vocabulary is represented by a vector

Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors
- ldea:
- Start with a large corpus (“body”) of text
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word ¢
and context (outside) word o

Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors

- |ldea:

- Start with a large corpus (“body”) of text

- Every word in a fixed vocabulary is represented by a vector

- Go through each position t in the text, which has a center word ¢
and context (outside) word o

- Use the similarity of the word vectors for c and o to calculate the
probability of o given ¢ (or vice versa)

Word2vec: Overview

- Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors

- |ldea:

- Start with a large corpus (“body”) of text

- Every word in a fixed vocabulary is represented by a vector

- Go through each position t in the text, which has a center word ¢
and context (outside) word o

- Use the similarity of the word vectors for c and o to calculate the
probability of o given ¢ (or vice versa)

- Keep adjusting the word vectors to maximize the probability

Word2vec: Two models

INPUT PROJECTION OUTPUT

SUM

Continuous Bag of Words (CBOW):
predicting the center words using
the context words (P(W¢|W¢_2, We—1, Wet1, Wey2))

In practice, we focus on Skip-gram.

INPUT PROJECTION OUTPUT

Skip-grams (SG):
predicting the context words using
the center word (P(W¢4;lwe), i € {—2,-1,1,2})

16

Build training pairs

- Take a large text corpus

Build training pairs

- Take a large text corpus

- For each word, collect nearby words within a fixed window size

Build training pairs

- Take a large text corpus
- For each word, collect nearby words within a fixed window size

- These become training pairs: (center word, context word)

Word2Vec: Skip-grams (window size = 1)

* “king brave man”
* “queen beautiful woman”

word neighbor
king brave
brave king
brave man
man brave
queen beautiful
beautiful queen
beautiful woman
woman beautiful

Word2Vec: Skip-grams (window size = 2)

* “king brave man”

* “queen beautiful woman”

word neighbor
king brave
king man
brave man
brave king
man king
man brave
queen beautiful
queen woman
beautiful queen
beautiful woman
woman queen
woman beautiful

19

Word2Vec: Skip-grams (window size = 2)

word one-hot encoding neighbor one-hot encoding
king [1,0,0,0,0,0] brave [0,1,0,0,0,0]
king [1,0,0,0,0,0] man [0,0,1,0,0,0]
brave [0,1,0,0,0,0] man [0,0,1,0,0,0]
brave [0,1,0,0,0,0] king [1,0,0,0,0,0]
man [0,0,1,0,0,0] king [1,0,0,0,0,0]
man [0,0,1,0,0,0] brave [0,1,0,0,0,0]
queen [0,0,0,1,0,0] beautiful [0,0,0,0,1,0]
queen [0,0,0,1,0,0] woman [0,0,0,0,0,1]
beautiful [0,0,0,0,1,0] queen [0,0,0,1,0,0]
beautiful [0,0,0,0,1,0] woman [0,0,0,0,0,1]
woman [0,0,0,0,0,1] queen [0,0,0,1,0,0]
woman [0,0,0,0,0,1] beautiful [0,0,0,0,1,0]

20

Word2Vec: Input and output

input
[1,0,0,0,0,0]
[1,0,0,0,0,0]
[0,1,0,0,0,0]
[0,1,0,0,0,0]
[0,0,1,0,0,0]
[0,0,1,0,0,0]
[0,0,0,1,0,0]
[0,0,0,1,0,0]
[0,0,0,0,1,0]
[0,0,0,0,1,0]
[0,0,0,0,0,1]
[0,0,0,0,0,1]

output

[0,1,0,0,0,0]

[0,0,1,0,0,0]

[0,0,1,0,0,0]

[1,0,0,0,0,0]

[1,0,0,0,0,0]

[0,1,0,0,0,0]

[0,0,0,0,1,0]

[0,0,0,0,0,1]

[0,0,0,1,0,0]

[0,0,0,0,0,1]

[0,0,0,1,0,0]

[0,0,0,0,1,0]

21

Word2Vec: Training

input layer

22

hidden layer

input layer

(linear transformation) word embedding
king [1,1
king brave [1,2]
man [1,3]
queen [5,1]
beautiful [5, 2]
woman [5, 3]

1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

24

1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

- All these word vectors are stored in a single matrix:

Embedding matrix E ¢ RV*¢

24

1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

- All these word vectors are stored in a single matrix:
Embedding matrix E ¢ RV*¢

- Why do we store all vectors in one matrix?

24

1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

- All these word vectors are stored in a single matrix:
Embedding matrix E ¢ RV*¢

- Why do we store all vectors in one matrix?

- Each word has a unique ID, so we can quickly select its row from
the matrix.

24

1. One-hot and embedding lookup

- Each word in the vocabulary is represented as a dense vector.

- All these word vectors are stored in a single matrix:
Embedding matrix E ¢ RV*¢

- Why do we store all vectors in one matrix?

- Each word has a unique ID, so we can quickly select its row from
the matrix.
- This operation is very efficient — it's just a lookup.

24

2. Predicting context words

- Take the center word’s embedding

25

2. Predicting context words

- Take the center word’s embedding

- Compare it with each candidate context word’s output vector

25

2. Predicting context words

- Take the center word’s embedding
- Compare it with each candidate context word’s output vector
- Compute a dot product as a similarity score

25

Note. Dot product as similarity score

- Algebraic definition: For two vectors a = (aq, ..., a,,) and

b=(by,...,b,),
a-b= Zaibi
i=1

(multiply each coordinate and add them up)

- Geometric interpretation: The same dot product can also be
written as
a-b=|al|b|cos@

where 6 is the angle between a and b. Larger values = vectors
point in a similar direction (more related).

26

Note. Dot product as similarity score

- In Word2Vec: .

w‘ Uczuwz
i=1

where v, is the center word vector, u,, is a candidate context
vector.

- Toy example: v, = [2,1] (“cat”), u,, = [3, 4] (“dog")
=2x3)+(1x4)=10
- Comparison: u,, = [—2,5] (“car”)

=(2x-2)+(1x5)=1

27

Note. Dot Product as Geometry (Examples)

IS

og (u,,)

6 1115

UAB) 270

< v, = [2,1] (“cat”), u,, = [3,4] (“dog”) w
positive (similar direction).

< v, = [2,1] (“cat”), u,, = [-2,5] (“car”) wv,-u, =1 = small
(weak relation). -

-u,, =10 = large

c

3. From similarity scores to probabilities

- After retrieving the center word and a context word'’s vectors, we
compute their dot product:

score = 4, - U,

29

3. From similarity scores to probabilities

- After retrieving the center word and a context word'’s vectors, we
compute their dot product:

score = 4, - U,

- To interpret this score as a probability, we apply the sigmoid

function:
1

o(score) = T3 oo

29

3. From similarity scores to probabilities

- After retrieving the center word and a context word'’s vectors, we
compute their dot product:

score = 4, - U,

- To interpret this score as a probability, we apply the sigmoid

function:
1

1 _|_ e*SCOI’G
- The output is a number between 0 and 1 — representing how
likely this word is to appear in the context.

o(score) =

29

4, Compute loss

- We compare predicted probabilities with actual labels:

30

4, Compute loss

- We compare predicted probabilities with actual labels:
- True context words - label = 1

30

4, Compute loss

- We compare predicted probabilities with actual labels:

- True context words = label = 1
- Negative (random) words - label = 0

30

4, Compute loss

- We compare predicted probabilities with actual labels:

- True context words = label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

30

4, Compute loss

- We compare predicted probabilities with actual labels:

- True context words = label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

- The model is rewarded when:

30

4, Compute loss

- We compare predicted probabilities with actual labels:

- True context words = label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

- The model is rewarded when:
- It assigns high probability to true context words

30

4, Compute loss

- We compare predicted probabilities with actual labels:

- True context words = label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

- The model is rewarded when:

- It assigns high probability to true context words
- It assigns low probability to negative (random) words

30

4, Compute loss

- We compare predicted probabilities with actual labels:
- True context words - label = 1
- Negative (random) words - label =

- We apply the binary cross-entropy loss:

o (W DDl (1 o >))

- The model is rewarded when:

- It assigns high probability to true context words
- It assigns low probability to negative (random) words

- The model adjusts vectors to maximize the probability of real
words and minimize that of negatives

30

5. Update word vectors

- Optimizer updates parameters based on gradients

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:
- The center word’s vector

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:

- The center word’s vector

- The true context word’s vector

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:

- The center word’s vector

- The true context word’s vector

- The negative samples’ vectors

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:
- The center word’s vector
- The true context word'’s vector
- The negative samples’ vectors
- Over time, words with similar contexts move closer in vector
space

Learning step

Minimum

Random
initial value

@>

31

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:
- The center word’s vector
- The true context word'’s vector
- The negative samples’ vectors
- Over time, words with similar contexts move closer in vector
space
- We'll look at the optimization more closely in the following slides.

Cost
A

Learning step

Minimum

Random
initial value

@>

31

Notel. Embedding matrix

- E is the embedding matrix: each row corresponds to one word

- Its size:
Ec RVXN

-V = vocabulary size (number of unique words)
- N = embedding dimension (hyperparameter)

- Example: V = 10,000, N = 300 = 3 million parameters
- Larger N = more expressive vectors, but higher cost

32

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(6) (measures how wrong predictions are).

Cost

Learning step

Minimum

Random
initial value

D>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(6) (measures how wrong predictions are).
- ldea:

Cost

Learning step

Minimum

Random
initial value

D>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values

Cost

Learning step

Minimum

Random
initial value

>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values
- Compute the gradient of J(#) (which tells us the slope)

Cost

Learning step

Minimum

Random
initial value

>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values
- Compute the gradient of J(#) (which tells us the slope)
- Move a small step in the opposite direction of the gradient

Cost

Learning step

Minimum

Random
initial value

>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values
- Compute the gradient of J(#) (which tells us the slope)
- Move a small step in the opposite direction of the gradient
- Repeat many times until the loss becomes small

Cost

Learning step

Minimum

Random
initial value

>

33

Note2. Optimization: Gradient Descent

- Goal: Learn good word vectors by minimizing a loss function
J(0) (measures how wrong predictions are).
- ldea:
- Start from random initial values
- Compute the gradient of J(#) (which tells us the slope)
- Move a small step in the opposite direction of the gradient
- Repeat many times until the loss becomes small
- Loss functions may not always convex.

Cost

Learning step

Minimum

Random
initial value

>

33

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of J(6) using all data, then update 6.

- Because all data is considered, the update direction is accurate.

- However, when the dataset is large, computation becomes very
slow.

34

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of J(6) using all data, then update 6.
- Because all data is considered, the update direction is accurate.

- However, when the dataset is large, computation becomes very
slow.

Stochastic Gradient Descent (SGD)

- Randomly sample one data point from the training set, compute
its gradient, then update 6.

- Because only one sample is used, the path may fluctuate a lot.
- Despite the noise, it is much faster than batch gradient descent.

34

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of J(6) using all data, then update 6.
- Because all data is considered, the update direction is accurate.

- However, when the dataset is large, computation becomes very
slow.

Stochastic Gradient Descent (SGD)

- Randomly sample one data point from the training set, compute
its gradient, then update 6.

- Because only one sample is used, the path may fluctuate a lot.

- Despite the noise, it is much faster than batch gradient descent.

Mini-Batch Gradient Descent

- Compute the gradient using a mini-batch of data, then update 6.
- This balances the pros and cons of batch and stochastic
gradient descent, making it the most practical method.
34

GloVe

Revisit: Count-based & Neural-based models

- Count-based

- Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity

- Neural-based
- Scales with corpus size

- Inefficient usage of statistics (e.g., random sampling)

35

Motivation: Encoding meaning via co-occurrence ratios

- ldea: Meaning differences between words can be reflected in the
ratios of their co-occurrence probabilities with other words.

- GloVe leverages these ratios to learn word vectors where vector
differences encode semantic components.

- Next lecture (on Tuesday), we'll start from here.

36

Evaluation

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

Intrinsic evaluation

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real

downstream task.
- Requires evaluation at every epoch while solving the real task =

time-consuming.

Intrinsic evaluation

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real

downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

Intrinsic evaluation

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

- e.g, Name Entity Recognition Task

Intrinsic evaluation

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

- e.g, Name Entity Recognition Task

Intrinsic evaluation

- Evaluate performance through concrete subtasks at
intermediate stages (e.g., word similarity, analogy).

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

- e.g, Name Entity Recognition Task

Intrinsic evaluation

- Evaluate performance through concrete subtasks at
intermediate stages (e.g., word similarity, analogy).
- Faster evaluation speed.

37

How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real
downstream task.

- Requires evaluation at every epoch while solving the real task =
time-consuming.

- Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

- e.g, Name Entity Recognition Task

Intrinsic evaluation

- Evaluate performance through concrete subtasks at
intermediate stages (e.g., word similarity, analogy).

- Faster evaluation speed.

- Difficult to judge whether improvements actually transfer to real
tasks.

37

How to evaluate word vectors

Extrinsic evaluation

- e.g, Name Entity Recognition Task

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.
Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 734
SVD |90.8 857 773 737
SVD-S | 91.0 855 77.6 743
SVD-L | 90.5 84.8 736 715
HPCA | 92.6 887 817 80.7
HSMN | 90.5 857 787 74.7
CwW 922 874 81.7 802
CBOW | 93.1 882 822 8l1.1
GloVe | 932 833 829 822

Figure 1: Pennington et al. (2014)

38

How to evaluate word vectors

Intrinsic evaluation
- e.g, Word Analogies: Syntactic, Semantic

Word analogy task: "aisto b as cisto ?”

- Semantic example: Athens : Greece = Berlin: ___
- Syntactic example: dance : dancing = fly: ___

39

How to evaluate word vectors

Intrinsic evaluation
- e.g, Word Analogies: Syntactic, Semantic

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available?; (i)vLBL results arc from (Mnih ct al..
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al.. 2013a.b); we trained SG'
and CBOW' using the word2vec tool’. See text
for details and a description of the SVD models.

Model _Dim. _Size | Sem. Syn. Tot.
LBL 100 1.5B | 559 50.1 532
HPCA 100 16B| 42 164 108
GloVe 100 16B | 67.5 543 603
SG 300 1B | 61 61 6l
CBOW 300 16B| 161 526 36.1
vLBL 300 15B| 542 648 60.0
iLBL 300 15B | 652 630 64.0
GloVe 300 16B | 80.8 615 703
SVD 300 6B | 63 81 73
SVDS 300 6B | 367 466 421
SVD-L 300 6B | 566 630 60.1
CBOW' 300 6B | 63.6 674 657
SG' 300 6B | 730 660 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 57.3 689 63.7
SG 1000 6B | 661 65.1 656
SVDL 300 42B | 384 582 492
Glove 300 42B | 819 693 75.0

Figure 2: Pennington et al. (2014)

40

How to evaluate word vectors

Intrinsic evaluation

- e.g, Correlation evaluation: calculate the relationship between
word vector and human judgments
- Dataset: wordsim353

(https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW* vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 351 425 383 256
SVD-S 6B | 565 715 710 536 347
SVD-L 6B | 657 727 751 565 37.0
CBOW' 6B | 572 656 682 57.0 325
SG' 6B | 628 652 69.7 581 372
GloVe 6B | 658 727 77.8 539 381
SVD-L 42B| 740 764 741 583 39.9
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 594 455

Figure 3: Pennington et al. (2014)
4

https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)

Wrap-up

Conclusion

- Encoding and embedding

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers

42

Conclusion

- Encoding and embedding
- Word2vec

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers

42

Conclusion

- Encoding and embedding
- Word2vec

- Evaluation

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers

42

	Review
	Lesson plan
	Encoding and embedding
	Word2vec
	GloVe
	Evaluation
	Wrap-up

