3. Word vectors

LING-581-Natural Language Processing1

Instructor: Hakyung Sung

September 2, 2025

*Acknowledgment: These course slides are based on materials from CS224N: NLP with Deep Learning @ Stanford University.

Table of contents

1. Encoding and embedding

2. Word2vec

3. GloVe

4. Evaluation

Review

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

Traditional NLP method: Use the sets of synonyms and hypernyms of word by querying some databases (e.g., *WordNet*)

Missing nuances

- Missing nuances
- \cdot Missing new meanings of words

- Missing nuances
- Missing new meanings of words
 - Word meanings constantly change and adapt based on how people really use the language in the world

- · Missing nuances
- Missing new meanings of words
 - Word meanings constantly change and adapt based on how people really use the language in the world
 - Practically, building/updating a database is expensive and inefficient.

- · Missing nuances
- Missing new meanings of words
 - Word meanings constantly change and adapt based on how people really use the language in the world
 - Practically, building/updating a database is expensive and inefficient.
- Can't compute accurate word similarity

· Review

- · Review
- Encoding and embedding

- · Review
- · Encoding and embedding
- Word2vec

- · Review
- · Encoding and embedding
- Word2vec
- Evaluation

- · Review
- · Encoding and embedding
- Word2vec
- Evaluation

- Review
- Encoding and embedding
- · Word2vec
- Evaluation

Key idea: Word meanings can be represented well by a high-dimensional vector of real numbers

Encoding and embedding

 $\boldsymbol{\cdot}$ Words themselves cannot be given as inputs to computers

- · Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers

- · Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers
- Encoding = converting words to vectors

- · Words themselves cannot be given as inputs to computers
- BUT, numbers can be given as inputs to computers
- Encoding = converting words to vectors
 - · vector: an ordered list of numbers (e.g., [0.1, 0.3, -0.5])

· The cat sat

• Only the entry for the word is set to 1 (others = 0)

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

- The cat sat
- Only the entry for the word is set to 1 (others = 0)

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

- Each vector is in $\mathbb{R}^{|v| \times 1}$, where $|v| = ext{vocabulary size}$

- The cat sat
- Only the entry for the word is set to 1 (others = 0)

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

- Each vector is in $\mathbb{R}^{|v|\times 1}$, where |v|= vocabulary size
- For simplicity, we wrote them as row vectors in the should be transposed; turning a row into a column vector)

· The cat sat

•	Only the	entry for	the word	is set to 1	(others = 0)
---	----------	-----------	----------	-------------	--------------

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

- Each vector is in $\mathbb{R}^{|v| \times 1}$, where |v| = vocabulary size
- For simplicity, we wrote them as row vectors in the should be transposed; turning a row into a column vector)
- · Localist, sparse representation

· The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

• High dimensional vectors (size = vocab size)

· The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)
- \cdot No sense of similarity between words

· The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)
- No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)

The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)
- No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)
- · Cosine similarity:
- · Solution:

· The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- · High dimensional vectors (size = vocab size)
- No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)
- · Cosine similarity:

$$\cdot \cos(\theta) = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| \|\vec{B}\|}$$
 (code)

The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- · High dimensional vectors (size = vocab size)
- · No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)
- · Cosine similarity:

$$\cdot \cos(\theta) = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| \|\vec{B}\|}$$
 (code)

- · Solution:
 - Move from sparse to distributed representation

· The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- High dimensional vectors (size = vocab size)
- · No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)
- · Cosine similarity:

$$\cdot \cos(\theta) = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| \|\vec{B}\|}$$
 (code)

- Move from sparse to distributed representation
- Learn to encode similarity in the vectors themselves

The cat sat

word	encoding
the	[1, 0, 0]
cat	[0, 1, 0]
sat	[0, 0, 1]

· Problems with one-hot encoding:

- · High dimensional vectors (size = vocab size)
- · No sense of similarity between words
- All one-hot vectors are orthogonal (see graph)
- · Cosine similarity:

•
$$\cos(\theta) = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| \|\vec{B}\|}$$
 (code)

- Move from sparse to distributed representation
- Learn to encode similarity in the vectors themselves
- · Word embeddings (e.g., Word2Vec, GloVe)

Representing words by their context

• **Distributional semantics**: A word's meaning is given by the words that frequently appear close-by

Representing words by their context

- **Distributional semantics**: A word's meaning is given by the words that frequently appear close-by
- "You shall know a word by the company it keeps" (Firth, 1957) One of the most successful ideas of modern statistical NLP.

Representing words by their context

- **Distributional semantics**: A word's meaning is given by the words that frequently appear close-by
- "You shall know a word by the company it keeps" (Firth, 1957) One of the most successful ideas of modern statistical NLP.
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window)

Representing words by their context

- **Distributional semantics**: A word's meaning is given by the words that frequently appear close-by
- "You shall know a word by the company it keeps" (Firth, 1957) One of the most successful ideas of modern statistical NLP.
- When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window)
- Use the many context of w to build up a representation of w

Word vector representations: Two ways

1. **Count-based models**: Build a co-occurrence matrix and apply SVD

Word vector representations: Two ways

- Count-based models: Build a co-occurrence matrix and apply SVD
- 2. **Neural network–based models**: Learn embeddings by predicting context words (e.g., Word2Vec, GloVe)

Word vectors: Count-based Models

 \cdot Start with a Bag-of-Words (BoW) representation

Word vectors: Count-based Models

- · Start with a Bag-of-Words (BoW) representation
- Extend to a co-occurrence matrix: count how often words appear together in a context window

Word vectors: Count-based Models

- · Start with a Bag-of-Words (BoW) representation
- Extend to a co-occurrence matrix: count how often words appear together in a context window
- Apply Singular Value Decomposition (SVD) to reduce dimensions (a way of breaking a big matrix into a smaller pieces)

cf. Bag of Words

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

• Bag-of-Words assumption: Context words are treated as unordered and independent.

cf. Bag of Words

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

- Bag-of-Words assumption: Context words are treated as unordered and independent.
- In other words, the **position** of a context word relative to the target is ignored.

Word vectors: Count-based models

Example sentences:

- I like apples.
- · You like bananas.
- They eat bananas.
- · We enjoy apples.
- They like fruit.

Word vectors: Count-based models

Example sentences:

- I like apples.
- · You like bananas.
- They eat bananas.
- · We enjoy apples.
- · They like fruit.

		you	we	they	like	eat	enjoy	apples	bananas	fruit
I	0	0	0	0	1	0	0	0	0	0
you	0	0	0	0	1	0	0	0	0	0
we	0	0	0	0	0	0	1	0	0	0
they	0	0	0	0	1	1	0	0	0	0
like	1	1	0	1	0	0	0	1	1	1
eat	0	0	0	1	0	0	0	0	1	0
enjoy	0	0	1	0	0	0	0	1	0	0
apples	0	0	0	0	1	0	1	0	0	0
bananas	0	0	0	0	1	1	0	0	0	0
fruit	0	0	0	0	1	0	0	0	0	0

Co-occurrence Matrix (window size = 1)

· High computational cost

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - · Too large to store/compute for big corpora

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - · Too large to store/compute for big corpora
- · Sparse and noisy

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - · Too large to store/compute for big corpora
- · Sparse and noisy
 - Most cells are $0 \Rightarrow$ sparse matrix

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - Too large to store/compute for big corpora
- · Sparse and noisy
 - Most cells are $0 \Rightarrow$ sparse matrix
 - Rare words/contexts yield unreliable statistics

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - Too large to store/compute for big corpora
- · Sparse and noisy
 - Most cells are 0 ⇒ sparse matrix
 - · Rare words/contexts yield unreliable statistics
- · Poor scalability / update issues

- · High computational cost
 - Co-occurrence matrix size: $|V| \times |V|$ (vocabulary squared)
 - Too large to store/compute for big corpora
- Sparse and noisy
 - Most cells are $0 \Rightarrow$ sparse matrix
 - · Rare words/contexts yield unreliable statistics
- · Poor scalability / update issues
 - Adding new words requires recomputing the entire matrix and SVD

How are they different from count-based models?

How are they different from count-based models?

 Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

Consistent progress

• 1986: Learning representations by back propagting errors (Rumelhart et al., 1986)

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

- 1986: Learning representations by back propagting errors (Rumelhart et al., 1986)
- · 2003: A neural probabilistic language model (Bengio et al., 2003)

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

- 1986: Learning representations by back propagting errors (Rumelhart et al., 1986)
- · 2003: A neural probabilistic language model (Bengio et al., 2003)
- · 2013: Word2Vec (Skip-gram, CBOW)

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

- 1986: Learning representations by back propagting errors (Rumelhart et al., 1986)
- · 2003: A neural probabilistic language model (Bengio et al., 2003)
- · 2013: Word2Vec (Skip-gram, CBOW)
- 2014–2015: GloVe, fastText

How are they different from count-based models?

- Count-based models: build large co-occurrence matrices, then compress (e.g., SVD)
- Neural models: learn vectors directly by predicting context words

- 1986: Learning representations by back propagting errors (Rumelhart et al., 1986)
- · 2003: A neural probabilistic language model (Bengio et al., 2003)
- · 2013: Word2Vec (Skip-gram, CBOW)
- 2014–2015: GloVe, fastText
- · 2018– : Contextual embeddings (ELMo, BERT, GPT)

Word2vec

- Word2vec (Mikolov et al., 2013) is a framework for learning word vectors
- · Idea:
 - $\cdot\,$ Start with a large corpus ("body") of text

- Word2vec (Mikolov et al., 2013) is a framework for learning word vectors
- · Idea:
 - · Start with a large corpus ("body") of text
 - $\boldsymbol{\cdot}$ Every word in a fixed vocabulary is represented by a \boldsymbol{vector}

- Word2vec (Mikolov et al., 2013) is a framework for learning word vectors
- · Idea:
 - Start with a large corpus ("body") of text
 - Every word in a fixed vocabulary is represented by a **vector**
 - Go through each position t in the text, which has a center word c and context (outside) word o

- Word2vec (Mikolov et al., 2013) is a framework for learning word vectors
- · Idea:
 - Start with a large corpus ("body") of text
 - · Every word in a fixed vocabulary is represented by a vector
 - Go through each position t in the text, which has a center word c and context (outside) word o
 - Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)

- Word2vec (Mikolov et al., 2013) is a framework for learning word vectors
- · Idea:
 - Start with a large corpus ("body") of text
 - · Every word in a fixed vocabulary is represented by a vector
 - Go through each position t in the text, which has a center word c and context (outside) word o
 - Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
 - Keep adjusting the word vectors to maximize the probability

Word2vec: Two models

In practice, we focus on Skip-gram.

Build training pairs

• Take a large text corpus

Build training pairs

- Take a large text corpus
- For each word, collect nearby words within a fixed window size

Build training pairs

- Take a large text corpus
- · For each word, collect nearby words within a fixed window size
- · These become training pairs: (center word, context word)

Word2Vec: Skip-grams (window size = 1)

- "king brave man"
- "queen beautiful woman"

word	neighbor	
king	brave	
brave	king	
brave	man	
man	brave	
queen	beautiful	
beautiful	queen	
beautiful	woman	
woman	beautiful	

Word2Vec: Skip-grams (window size = 2)

- "king brave man"
- "queen beautiful woman"

word	neighbor	
king	brave	
king	man	
brave	man	
brave	king	
man	king	
man	brave	
queen	beautiful	
queen	woman	
beautiful	queen	
beautiful	woman	
woman	queen	
woman	beautiful	

Word2Vec: Skip-grams (window size = 2)

word	one-hot encoding	neighbor	one-hot encoding
king	[1, 0, 0, 0, 0, 0]	brave	[0, 1, 0, 0, 0, 0]
king	[1, 0, 0, 0, 0, 0]	man	[0, 0, 1, 0, 0, 0]
brave	[0, 1, 0, 0, 0, 0]	man	[0, 0, 1, 0, 0, 0]
brave	[0, 1, 0, 0, 0, 0]	king	[1, 0, 0, 0, 0, 0]
man	[0, 0, 1, 0, 0, 0]	king	[1, 0, 0, 0, 0, 0]
man	[0, 0, 1, 0, 0, 0]	brave	[0, 1, 0, 0, 0, 0]
queen	[0, 0, 0, 1, 0, 0]	beautiful	[0, 0, 0, 0, 1, 0]
queen	[0, 0, 0, 1, 0, 0]	woman	[0, 0, 0, 0, 0, 1]
beautiful	[0, 0, 0, 0, 1, 0]	queen	[0, 0, 0, 1, 0, 0]
beautiful	[0, 0, 0, 0, 1, 0]	woman	[0, 0, 0, 0, 0, 1]
woman	[0, 0, 0, 0, 0, 1]	queen	[0, 0, 0, 1, 0, 0]
woman	[0, 0, 0, 0, 0, 1]	beautiful	[0, 0, 0, 0, 1, 0]

Word2Vec: Input and output

input
[1,0,0,0,0,0]
[1,0,0,0,0,0]
[0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0]
[0,0,1,0,0,0]
[0,0,0,1,0,0]
[0,0,0,1,0,0]
[0,0,0,0,1,0]
[0,0,0,0,1,0]
[0, 0, 0, 0, 0, 1]
[0,0,0,0,0,1]

output	
[0, 1, 0, 0, 0, 0]	
[0, 0, 1, 0, 0, 0]	
[0, 0, 1, 0, 0, 0]	
[1, 0, 0, 0, 0, 0]	
[1, 0, 0, 0, 0, 0]	
[0, 1, 0, 0, 0, 0]	
[0, 0, 0, 0, 1, 0]	
[0, 0, 0, 0, 0, 1]	
[0, 0, 0, 1, 0, 0]	
[0, 0, 0, 0, 0, 1]	
[0, 0, 0, 1, 0, 0]	
[0, 0, 0, 0, 1, 0]	

• Each word in the vocabulary is represented as a **dense vector**.

- Each word in the vocabulary is represented as a dense vector.
- All these word vectors are stored in a single matrix:

Embedding matrix
$$E \in \mathbb{R}^{V \times d}$$

- Each word in the vocabulary is represented as a dense vector.
- All these word vectors are stored in a single matrix:

Embedding matrix
$$E \in \mathbb{R}^{V \times d}$$

• Why do we store all vectors in one matrix?

- Each word in the vocabulary is represented as a dense vector.
- · All these word vectors are stored in a single matrix:

Embedding matrix
$$E \in \mathbb{R}^{V \times d}$$

- · Why do we store all vectors in one matrix?
 - Each word has a unique ID, so we can quickly select its row from the matrix.

- Each word in the vocabulary is represented as a dense vector.
- All these word vectors are stored in a single matrix:

Embedding matrix
$$E \in \mathbb{R}^{V \times d}$$

- Why do we store all vectors in one matrix?
 - Each word has a unique ID, so we can quickly select its row from the matrix.
 - This operation is very efficient it's just a lookup.

2. Predicting context words

 $\boldsymbol{\cdot}$ Take the center word's embedding

2. Predicting context words

- · Take the center word's embedding
- $\boldsymbol{\cdot}$ Compare it with each candidate context word's output vector

2. Predicting context words

- · Take the center word's embedding
- $\boldsymbol{\cdot}$ Compare it with each candidate context word's output vector
- Compute a dot product as a similarity score

Note. Dot product as similarity score

• Algebraic definition: For two vectors $a=(a_1,\dots,a_n)$ and $b=(b_1,\dots,b_n)$,

$$a \cdot b = \sum_{i=1}^{n} a_i b_i$$

(multiply each coordinate and add them up)

 Geometric interpretation: The same dot product can also be written as

$$a \cdot b = ||a|| \, ||b|| \cos \theta$$

where θ is the angle between a and b. Larger values \Rightarrow vectors point in a similar direction (more related).

Note. Dot product as similarity score

· In Word2Vec:

$$s(w|c) = v_c \cdot u_w = \sum_{i=1}^d v_{c,i} \, u_{w,i}$$

where v_c is the center word vector, \boldsymbol{u}_w is a candidate context vector.

- Toy example: $v_c = [2,1]$ ("cat"), $u_w = [3,4]$ ("dog")

$$v_c \cdot u_w = (2 \times 3) + (1 \times 4) = 10$$

• Comparison: $u_w = [-2, 5]$ ("car")

$$v_c \cdot u_w = (2 \times -2) + (1 \times 5) = 1$$

Note. Dot Product as Geometry (Examples)

- $v_c = [2,1]$ ("cat"), $u_w = [3,4]$ ("dog") $v_c \cdot u_w = 10 \Rightarrow$ large positive (similar direction).
- $v_c=[2,1]$ ("cat"), $u_w=[-2,5]$ ("car") $v_c \cdot u_w=1 \Rightarrow \text{small}$ (weak relation).

3. From similarity scores to probabilities

 After retrieving the center word and a context word's vectors, we compute their dot product:

$$\mathrm{score} = \vec{v}_c \cdot \vec{u}_w$$

3. From similarity scores to probabilities

 After retrieving the center word and a context word's vectors, we compute their dot product:

$$\mathrm{score} = \vec{v}_c \cdot \vec{u}_w$$

 To interpret this score as a probability, we apply the sigmoid function:

$$\sigma(\mathrm{score}) = \frac{1}{1 + e^{-\mathrm{score}}}$$

3. From similarity scores to probabilities

 After retrieving the center word and a context word's vectors, we compute their dot product:

$$\mathrm{score} = \vec{v}_c \cdot \vec{u}_w$$

 To interpret this score as a probability, we apply the sigmoid function:

$$\sigma(\mathrm{score}) = \frac{1}{1 + e^{-\mathrm{score}}}$$

 The output is a number between 0 and 1 — representing how likely this word is to appear in the context.

• We compare predicted probabilities with actual labels:

- We compare predicted probabilities with actual labels:
 - True context words → label = 1

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words \rightarrow label = 0

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words → label = 0
- We apply the binary cross-entropy loss:

$$\mathcal{L} = -\left(\log\sigma(\vec{v}_c\cdot\vec{u}_{w^+}) + \sum_{i=1}^k\log\left(1 - \sigma(\vec{v}_c\cdot\vec{u}_{w_i^-})\right)\right)$$

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words → label = 0
- · We apply the binary cross-entropy loss:

$$\mathcal{L} = -\left(\log\sigma(\vec{v}_c\cdot\vec{u}_{w^+}) + \sum_{i=1}^k\log\left(1 - \sigma(\vec{v}_c\cdot\vec{u}_{w_i^-})\right)\right)$$

· The model is rewarded when:

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words → label = 0
- · We apply the binary cross-entropy loss:

$$\mathcal{L} = -\left(\log\sigma(\vec{v}_c\cdot\vec{u}_{w^+}) + \sum_{i=1}^k\log\left(1 - \sigma(\vec{v}_c\cdot\vec{u}_{w_i^-})\right)\right)$$

- · The model is rewarded when:
 - It assigns high probability to true context words

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words → label = 0
- · We apply the binary cross-entropy loss:

$$\mathcal{L} = -\left(\log\sigma(\vec{v}_c\cdot\vec{u}_{w^+}) + \sum_{i=1}^k\log\left(1 - \sigma(\vec{v}_c\cdot\vec{u}_{w_i^-})\right)\right)$$

- · The model is rewarded when:
 - It assigns high probability to true context words
 - · It assigns low probability to negative (random) words

- We compare predicted probabilities with actual labels:
 - True context words → label = 1
 - Negative (random) words → label = 0
- We apply the binary cross-entropy loss:

$$\mathcal{L} = -\left(\log\sigma(\vec{v}_c\cdot\vec{u}_{w^+}) + \sum_{i=1}^k\log\left(1 - \sigma(\vec{v}_c\cdot\vec{u}_{w_i^-})\right)\right)$$

- · The model is rewarded when:
 - It assigns high probability to true context words
 - It assigns low probability to negative (random) words
- The model adjusts vectors to maximize the probability of real words and minimize that of negatives

· Optimizer updates parameters based on gradients

- Optimizer updates parameters based on gradients
- · Parameters updated:

- Optimizer updates parameters based on gradients
- · Parameters updated:
 - · The center word's vector

- Optimizer updates parameters based on gradients
- · Parameters updated:
 - · The center word's vector
 - · The true context word's vector

- Optimizer updates parameters based on gradients
- Parameters updated:
 - · The center word's vector
 - The true context word's vector
 - The negative samples' vectors

5. Update word vectors

- · Optimizer updates parameters based on gradients
- · Parameters updated:
 - · The center word's vector
 - · The true context word's vector
 - The negative samples' vectors
- Over time, words with similar contexts move closer in vector space

5. Update word vectors

- Optimizer updates parameters based on gradients
- Parameters updated:
 - · The center word's vector
 - · The true context word's vector
 - The negative samples' vectors
- Over time, words with similar contexts move closer in vector space
- We'll look at the optimization more closely in the following slides.

Note1. Embedding matrix

- \cdot E is the embedding matrix: each row corresponds to one word
- · Its size:

$$E \in \mathbb{R}^{V \times N}$$

- *V* = vocabulary size (number of unique words)
- N =embedding dimension (hyperparameter)
- Example: V = 10,000, $N = 300 \Rightarrow 3$ million parameters
- Larger N = more expressive vectors, but higher cost

• Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:
 - · Start from random initial values

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:
 - · Start from random initial values
 - Compute the gradient of $J(\theta)$ (which tells us the slope)

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:
 - · Start from random initial values
 - · Compute the gradient of $J(\theta)$ (which tells us the slope)
 - · Move a small step in the **opposite direction** of the gradient

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:
 - Start from random initial values
 - Compute the gradient of $J(\theta)$ (which tells us the slope)
 - · Move a small step in the **opposite direction** of the gradient
 - Repeat many times until the loss becomes small

- Goal: Learn good word vectors by minimizing a loss function $J(\theta)$ (measures how wrong predictions are).
- · Idea:
 - Start from random initial values
 - Compute the gradient of $J(\theta)$ (which tells us the slope)
 - · Move a small step in the **opposite direction** of the gradient
 - · Repeat many times until the loss becomes small
- · Loss functions may not always convex.

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of $J(\theta)$ using all data, then update θ .
- Because all data is considered, the update direction is accurate.
- However, when the dataset is large, computation becomes very slow.

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of $J(\theta)$ using all data, then update θ .
- Because all data is considered, the update direction is accurate.
- However, when the dataset is large, computation becomes very slow.

Stochastic Gradient Descent (SGD)

- Randomly sample **one data point** from the training set, compute its gradient, then update θ .
- Because only one sample is used, the path may fluctuate a lot.
- Despite the noise, it is much faster than batch gradient descent.

Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

- Compute the gradient of $J(\theta)$ using all data, then update θ .
- Because all data is considered, the update direction is accurate.
- However, when the dataset is large, computation becomes very slow.

Stochastic Gradient Descent (SGD)

- Randomly sample one data point from the training set, compute its gradient, then update θ .
- Because only one sample is used, the path may fluctuate a lot.
- Despite the noise, it is much faster than batch gradient descent.

Mini-Batch Gradient Descent

- Compute the gradient using a **mini-batch** of data, then update θ .
- This balances the pros and cons of batch and stochastic gradient descent, making it the most practical method.

GloVe

Revisit: Count-based & Neural-based models

- · Count-based
 - · Fast training
 - · Efficient usage of statistics
 - · Primarily used to capture word similarity
- · Neural-based
- · Scales with corpus size
- Inefficient usage of statistics (e.g., random sampling)

Motivation: Encoding meaning via co-occurrence ratios

- Idea: Meaning differences between words can be reflected in the ratios of their co-occurrence probabilities with other words.
- GloVe leverages these ratios to learn word vectors where vector differences encode semantic components.
- · Next lecture (on Tuesday), we'll start from here.

Evaluation

Extrinsic evaluation

 Evaluate performance when word vectors are used in a real downstream task.

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.
- Hard to tell whether performance issues come from the model structure itself or from the embeddings.

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.
- Hard to tell whether performance issues come from the model structure itself or from the embeddings.
- e.g., Name Entity Recognition Task

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.
- Hard to tell whether performance issues come from the model structure itself or from the embeddings.
- e.g., Name Entity Recognition Task

Intrinsic evaluation

• Evaluate performance through concrete subtasks at intermediate stages (e.g., word similarity, analogy).

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.
- Hard to tell whether performance issues come from the model structure itself or from the embeddings.
- e.g., Name Entity Recognition Task

- Evaluate performance through concrete subtasks at intermediate stages (e.g., word similarity, analogy).
- · Faster evaluation speed.

Extrinsic evaluation

- Evaluate performance when word vectors are used in a real downstream task.
- Requires evaluation at every epoch while solving the real task ⇒ time-consuming.
- Hard to tell whether performance issues come from the model structure itself or from the embeddings.
- e.g., Name Entity Recognition Task

- Evaluate performance through concrete subtasks at intermediate stages (e.g., word similarity, analogy).
- Faster evaluation speed.
- Difficult to judge whether improvements actually transfer to real tasks.

Extrinsic evaluation

· e.g., Name Entity Recognition Task

Table 4: F1 score on NER task with 50d vectors. *Discrete* is the baseline without word vectors. We use publicly-available vectors for HPCA, HSMN, and CW. See text for details.

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

Figure 1: Pennington et al. (2014)

Intrinsic evaluation

· e.g., Word Analogies: Syntactic, Semantic

Word analogy task: "a is to b as c is to?"

- Semantic example: Athens : Greece :: Berlin : ___
- Syntactic example: dance : dancing :: fly : ___

Intrinsic evaluation

· e.g., Word Analogies: Syntactic, Semantic

Table 2: Results on the word analogy task, given as percent accuracy. Underlined scores are best within groups of similarly-sized models; bold scores are best overall. HPCA vectors are publicly available; (IVLBI, results are from (Meline et al., 2013); skip-gram (SG) and CBOW results are from (Meline et al., 2013ab); we trained SG' and CBOW using the word2/vec tool⁵. See text for details and a description of the SVD models.

Model	Dim.	Size	Sem.	Syn.	Tot.
ivLBL	100	1.5B	55.9	50.1	53.2
HPCA	100	1.6B	4.2	16.4	10.8
GloVe	100	1.6B	67.5	54.3	60.3
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	64.8	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	70.3
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	67.4	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	77.4	67.0	71.7
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	81.9	69.3	75.0

Figure 2: Pennington et al. (2014)

Intrinsic evaluation

- e.g., Correlation evaluation: calculate the relationship between word vector and human judgments
- Dataset: wordsim353

(https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)

Table 3: Spearman rank correlation on word similarity tasks. All vectors are 300-dimensional. The CBOW* vectors are from the word2vec website and differ in that they contain phrase vectors.

Size	WS353	MC	RG	SCWS	RW
6B	35.3	35.1	42.5	38.3	25.6
6B	56.5	71.5	71.0	53.6	34.7
6B	65.7	72.7	75.1	56.5	37.0
6B	57.2	65.6	68.2	57.0	32.5
6B	62.8	65.2	69.7	58.1	37.2
6B	65.8	72.7	77.8	53.9	38.1
42B	74.0	76.4	74.1	58.3	39.9
42B	75.9	<u>83.6</u>	82.9	<u>59.6</u>	<u>47.8</u>
100B	68.4	79.6	75.4	59.4	45.5
	6B 6B 6B 6B 6B 42B 42B	6B 35.3 6B 56.5 6B 65.7 6B 57.2 6B 62.8 6B 65.8 42B 74.0 42B 75.9	6B 35.3 35.1 6B 56.5 71.5 6B 65.7 72.7 6B 57.2 65.6 6B 62.8 65.2 6B 65.8 72.7 42B 74.0 76.4 42B 75.9 83.6	6B 35.3 35.1 42.5 6B 56.5 71.5 71.0 6B 65.7 72.7 75.1 6B 57.2 65.6 68.2 6B 62.8 65.2 69.7 6B 65.8 72.7 77.8 42B 74.0 76.4 74.1 42B 75.9 83.6 82.9	6B 35.3 35.1 42.5 38.3 6B 56.5 71.5 71.0 53.6 6B 65.7 72.7 75.1 56.5 6B 57.2 65.6 68.2 57.0 6B 62.8 65.2 69.7 58.1 6B 65.8 72.7 77.8 53.9 42B 74.0 76.4 74.1 58.3 42B 75.9 83.6 82.9 59.6

Figure 3: Pennington et al. (2014)

Wrap-up

Conclusion

Encoding and embedding

Key idea: Word meanings can be represented well by a high-dimensional vector of real numbers

Conclusion

- Encoding and embedding
- Word2vec

Key idea: Word meanings can be represented well by a high-dimensional vector of real numbers

Conclusion

- Encoding and embedding
- Word2vec
- Evaluation

Key idea: Word meanings can be represented well by a high-dimensional vector of real numbers