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Review



How do we represent the meanings in computer

Can computers understand meanings of the words as we do?

NO

Traditional NLP method: Use the sets of synonyms and hypernyms of
word by querying some databases (e.g., WordNet)
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Problems with the traditional method (like WordNet)

• Missing nuances

• Missing new meanings of words

• Word meanings constantly change and adapt based on how
people really use the language in the world

• Practically, building/updating a database is expensive and
inefficient.

• Can’t compute accurate word similarity
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Lesson plan



Lesson plan

• Review

• Encoding and embedding
• Word2vec
• Evaluation

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers
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Encoding and embedding



Encoding

• Words themselves cannot be given as inputs to computers

• BUT, numbers can be given as inputs to computers
• Encoding = converting words to vectors

• vector: an ordered list of numbers (e.g., [0.1, 0.3, -0.5])
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One-hot encoding

• The cat sat

word encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

• Only the entry for the word is set to 1 (others = 0)

• Each vector is in ℝ|𝑣|×1, where |𝑣| = vocabulary size
• For simplicity, we wrote them as row vectors in the -
should be transposed; turning a row into a column
vector)

• Localist, sparse representation
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One-hot encoding (problem)

• The cat sat

word encoding
the [1, 0, 0]
cat [0, 1, 0]
sat [0, 0, 1]

• Problems with one-hot encoding:
• High dimensional vectors (size = vocab size)

• No sense of similarity between words
• All one-hot vectors are orthogonal (see
graph)

• Cosine similarity:

• cos(𝜃) = ⃗𝐴⋅𝐵⃗
‖ ⃗𝐴‖‖𝐵⃗‖ (code)

• Solution:

• Move from sparse to distributed
representation

• Learn to encode similarity in the vectors
themselves

• Word embeddings (e.g., Word2Vec, GloVe)
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Representing words by their context

• Distributional semantics: A word’s meaning is given by the
words that frequently appear close-by

• “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

• When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window)

• Use the many context of w to build up a representation of w
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Word vector representations: Two ways

1. Count-based models: Build a co-occurrence matrix and apply
SVD

2. Neural network–based models: Learn embeddings by predicting
context words (e.g., Word2Vec, GloVe)
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Word vectors: Count-based Models

• Start with a Bag-of-Words (BoW) representation

• Extend to a co-occurrence matrix: count how often words
appear together in a context window

• Apply Singular Value Decomposition (SVD) to reduce dimensions
(a way of breaking a big matrix into a smaller pieces)
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cf. Bag of Words

(source: https://nachi-keta.medium.com/nlp-explain-bag-of-words-3b9fc4f211e8)

• Bag-of-Words assumption: Context words are treated as
unordered and independent.

• In other words, the position of a context word relative to the
target is ignored.

11
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Word vectors: Count-based models

Example sentences:

• I like apples.
• You like bananas.
• They eat bananas.
• We enjoy apples.
• They like fruit.

I you we they like eat enjoy apples bananas fruit
I 0 0 0 0 1 0 0 0 0 0
you 0 0 0 0 1 0 0 0 0 0
we 0 0 0 0 0 0 1 0 0 0
they 0 0 0 0 1 1 0 0 0 0
like 1 1 0 1 0 0 0 1 1 1
eat 0 0 0 1 0 0 0 0 1 0
enjoy 0 0 1 0 0 0 0 1 0 0
apples 0 0 0 0 1 0 1 0 0 0
bananas 0 0 0 0 1 1 0 0 0 0
fruit 0 0 0 0 1 0 0 0 0 0

Co-occurrence Matrix (window size = 1)
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Count-based models (Limitations)

• High computational cost

• Co-occurrence matrix size: |𝑉 | × |𝑉 | (vocabulary squared)
• Too large to store/compute for big corpora

• Sparse and noisy

• Most cells are 0 ⇒ sparse matrix
• Rare words/contexts yield unreliable statistics

• Poor scalability / update issues

• Adding new words requires recomputing the entire matrix and SVD
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Word vectors: Neural Network–Based Models

How are they different from count-based models?

• Count-based models: build large co-occurrence matrices, then
compress (e.g., SVD)

• Neural models: learn vectors directly by predicting context
words

Consistent progress

• 1986: Learning representations by back propagting errors
(Rumelhart et al., 1986)

• 2003: A neural probabilistic language model (Bengio et al., 2003)
• 2013: Word2Vec (Skip-gram, CBOW)
• 2014–2015: GloVe, fastText
• 2018– : Contextual embeddings (ELMo, BERT, GPT)
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Word2vec



Word2vec: Overview

• Word2vec (Mikolov et al., 2013) is a framework for learning word
vectors

• Idea:
• Start with a large corpus (“body”) of text

• Every word in a fixed vocabulary is represented by a vector
• Go through each position t in the text, which has a center word c
and context (outside) word o

• Use the similarity of the word vectors for c and o to calculate the
probability of o given c (or vice versa)

• Keep adjusting the word vectors to maximize the probability

15
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Word2vec: Two models

In practice, we focus on Skip-gram.
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Build training pairs

• Take a large text corpus

• For each word, collect nearby words within a fixed window size
• These become training pairs: (center word, context word)
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1. One-hot and embedding lookup

• Each word in the vocabulary is represented as a dense vector.

• All these word vectors are stored in a single matrix:

Embedding matrix 𝐸 ∈ ℝ𝑉 ×𝑑

• Why do we store all vectors in one matrix?

• Each word has a unique ID, so we can quickly select its row from
the matrix.

• This operation is very efficient — it’s just a lookup.
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2. Predicting context words

• Take the center word’s embedding

• Compare it with each candidate context word’s output vector
• Compute a dot product as a similarity score
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Note. Dot product as similarity score

• Algebraic definition: For two vectors 𝑎 = (𝑎1, … , 𝑎𝑛) and
𝑏 = (𝑏1, … , 𝑏𝑛),

𝑎 ⋅ 𝑏 =
𝑛

∑
𝑖=1

𝑎𝑖𝑏𝑖

(multiply each coordinate and add them up)
• Geometric interpretation: The same dot product can also be
written as

𝑎 ⋅ 𝑏 = ‖𝑎‖ ‖𝑏‖ cos 𝜃
where 𝜃 is the angle between 𝑎 and 𝑏. Larger values ⇒ vectors
point in a similar direction (more related).
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Note. Dot product as similarity score

• In Word2Vec:

𝑠(𝑤|𝑐) = 𝑣𝑐 ⋅ 𝑢𝑤 =
𝑑

∑
𝑖=1

𝑣𝑐,𝑖 𝑢𝑤,𝑖

where 𝑣𝑐 is the center word vector, 𝑢𝑤 is a candidate context
vector.

• Toy example: 𝑣𝑐 = [2, 1] (“cat”), 𝑢𝑤 = [3, 4] (“dog”)

𝑣𝑐 ⋅ 𝑢𝑤 = (2 × 3) + (1 × 4) = 10

• Comparison: 𝑢𝑤 = [−2, 5] (“car”)

𝑣𝑐 ⋅ 𝑢𝑤 = (2 × −2) + (1 × 5) = 1
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Note. Dot Product as Geometry (Examples)

𝑥

𝑦

cat (𝑣𝑐)

dog (𝑢𝑤)

car (𝑢𝑤)

𝜃 ≈ 27∘

𝜃 ≈ 111∘

• 𝑣𝑐 = [2, 1] (“cat”), 𝑢𝑤 = [3, 4] (“dog”) 𝑣𝑐 ⋅ 𝑢𝑤 = 10 ⇒ large
positive (similar direction).

• 𝑣𝑐 = [2, 1] (“cat”), 𝑢𝑤 = [−2, 5] (“car”) 𝑣𝑐 ⋅ 𝑢𝑤 = 1 ⇒ small
(weak relation). 28



3. From similarity scores to probabilities

• After retrieving the center word and a context word’s vectors, we
compute their dot product:

score = ⃗𝑣𝑐 ⋅ 𝑢⃗𝑤

• To interpret this score as a probability, we apply the sigmoid
function:

𝜎(score) = 1
1 + 𝑒−score

• The output is a number between 0 and 1 — representing how
likely this word is to appear in the context.
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4. Compute loss

• We compare predicted probabilities with actual labels:

• True context words → label = 1
• Negative (random) words → label = 0

• We apply the binary cross-entropy loss:

ℒ = − (log 𝜎( ⃗𝑣𝑐 ⋅ 𝑢⃗𝑤+) +
𝑘

∑
𝑖=1

log (1 − 𝜎( ⃗𝑣𝑐 ⋅ 𝑢⃗𝑤−
𝑖
)))

• The model is rewarded when:

• It assigns high probability to true context words
• It assigns low probability to negative (random) words

• The model adjusts vectors to maximize the probability of real
words and minimize that of negatives
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5. Update word vectors

• Optimizer updates parameters based on gradients

• Parameters updated:

• The center word’s vector
• The true context word’s vector
• The negative samples’ vectors

• Over time, words with similar contexts move closer in vector
space

• We’ll look at the optimization more closely in the following slides.
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Note1. Embedding matrix

• 𝐸 is the embedding matrix: each row corresponds to one word
• Its size:

𝐸 ∈ ℝ𝑉 ×𝑁

• 𝑉 = vocabulary size (number of unique words)
• 𝑁 = embedding dimension (hyperparameter)

• Example: 𝑉 = 10,000, 𝑁 = 300 ⇒ 3 million parameters
• Larger 𝑁 = more expressive vectors, but higher cost
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Note2. Optimization: Gradient Descent

• Goal: Learn good word vectors by minimizing a loss function
𝐽(𝜃) (measures how wrong predictions are).

• Idea:

• Start from random initial values
• Compute the gradient of 𝐽(𝜃) (which tells us the slope)
• Move a small step in the opposite direction of the gradient
• Repeat many times until the loss becomes small

• Loss functions may not always convex.
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Note3. Optimization: Stochastic Gradient Descent (SGD)

(Batch) Gradient Descent Algorithm: Issues

• Compute the gradient of 𝐽(𝜃) using all data, then update 𝜃.
• Because all data is considered, the update direction is accurate.
• However, when the dataset is large, computation becomes very
slow.

Stochastic Gradient Descent (SGD)

• Randomly sample one data point from the training set, compute
its gradient, then update 𝜃.

• Because only one sample is used, the path may fluctuate a lot.
• Despite the noise, it is much faster than batch gradient descent.

Mini-Batch Gradient Descent

• Compute the gradient using a mini-batch of data, then update 𝜃.
• This balances the pros and cons of batch and stochastic
gradient descent, making it the most practical method.
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GloVe



Revisit: Count-based & Neural-based models

• Count-based
• Fast training
• Efficient usage of statistics
• Primarily used to capture word similarity

• Neural-based
• Scales with corpus size
• Inefficient usage of statistics (e.g., random sampling)
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Motivation: Encoding meaning via co-occurrence ratios

• Idea: Meaning differences between words can be reflected in the
ratios of their co-occurrence probabilities with other words.

• GloVe leverages these ratios to learn word vectors where vector
differences encode semantic components.

• Next lecture (on Tuesday), we’ll start from here.
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Evaluation



How to evaluate word vectors (based on the GloVe)

Extrinsic evaluation

• Evaluate performance when word vectors are used in a real
downstream task.

• Requires evaluation at every epoch while solving the real task ⇒
time-consuming.

• Hard to tell whether performance issues come from the model
structure itself or from the embeddings.

• e.g., Name Entity Recognition Task

Intrinsic evaluation

• Evaluate performance through concrete subtasks at
intermediate stages (e.g., word similarity, analogy).

• Faster evaluation speed.
• Difficult to judge whether improvements actually transfer to real
tasks.
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How to evaluate word vectors

Extrinsic evaluation

• e.g., Name Entity Recognition Task

Figure 1: Pennington et al. (2014)
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How to evaluate word vectors

Intrinsic evaluation

• e.g., Word Analogies: Syntactic, Semantic

Word analogy task: ”a is to b as c is to ?”

• Semantic example: Athens : Greece :: Berlin : ___
• Syntactic example: dance : dancing :: fly : ___

39



How to evaluate word vectors

Intrinsic evaluation

• e.g., Word Analogies: Syntactic, Semantic

Figure 2: Pennington et al. (2014)
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How to evaluate word vectors

Intrinsic evaluation

• e.g., Correlation evaluation: calculate the relationship between
word vector and human judgments

• Dataset: wordsim353
(https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)

Figure 3: Pennington et al. (2014)
41
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Wrap-up



Conclusion

• Encoding and embedding

• Word2vec
• Evaluation

Key idea: Word meanings can be represented well by a
high-dimensional vector of real numbers
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